Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/cytxinve/public_html/cell-therapy.info/media/foundry/3.1/libraries/cssmin.php on line 2236
The brilliant PubMed database
The brilliant PubMed database

PubMed- Latest free Papers on ADRCs

|
What is PubMed?

PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

The brilliant thing about PubMed is that all scientific publishers whatever their ranking publishes at PubMed too- so it is comprised of everything- the latest greatest that we do not understand since written by and for scientists, but also the simple stuff which can be very enlightening for every mortal.

Anyway- to me- this query is pretty brilliant- it is on "Adipose + Derived + Regeneretive + Cells" and withe restriction- free papers only!

The below is the result of the day... i.e. come back often, since the listing of this page changes often....

Below you will find the feed of the latest "Free articles" with theme: Adipose Derived Regeneretive Cells"- i.e. ADRCs...

pubmed: adipose derived rege...

  • Tissue-engineered autologous grafts for facial bone reconstruction.
    Related Articles

    Tissue-engineered autologous grafts for facial bone reconstruction.

    Sci Transl Med. 2016 Jun 15;8(343):343ra83

    Authors: Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Shah F, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G

    Abstract
    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering.

    PMID: 27306665 [PubMed - indexed for MEDLINE]

  • No comments found

Leave your comments

Post comment as a guest

0
Your comments are subject to administrator's moderation.
terms and condition.